Thursday, March 15, 2012

1203.3130 (E. Hiyama et al.)

Perfect linear correlations between 4He trimer and tetramer energies
calculated with various realistic 4He potentials
   [PDF]

E. Hiyama, M. Kamimura
In a previous work [Phys. Rev. A 85, 022502 (2012)] we calculated, with the use of our Gaussian expansion method for few-body systems, the energy levels and spatial structure of the 4He trimer and tetramer ground and excited states using the LM2M2 potential that has a very strong short-range repulsion. In this work, we calculate the same quantities using the presently most accurate 4He-4He potential [M. Przybytek et al., Phys. Rev. Lett. 104, 183003 (2010)] that includes the adiabatic, relativistic, QED and residual retardation corrections. Contributions of the corrections to the tetramer ground-(excited-)state energy, -573.90 (-132.70) mK, are found to be, respectively, -4.13 (-1.52) mK, +9.37 (+3.48) mK, -1.20 (-0.46) mK and +0.16 (+0.07) mK. Further including other realistic 4He potentials called LM2M2, TTY, HFD-B, HFD-B3-FCI1, SAPT96 and CCSAPT07, we calculated the binding energies of the trimer and tetramer ground and excited states, B_3^(0), B_3^(1), B_4^(0) and B_4^(1), respectively. We found that the four kinds of the energies for the different potentials exhibit perfect linear correlations between any two of them over the range of binding energies relevant for 4He atoms (namely, six types of the generalized Tjon lines are given). The dimerlike-pair model for 4He clusters, proposed in the previous work, predicts a simple universal relation B_4^(1)/B_2 =B_3^(0)/B_2 + 2/3, which precisely explains the correlation between the tetramer excited-state energy and the trimer ground-state energy, B_2 being the dimer binding energy.
View original: http://arxiv.org/abs/1203.3130

No comments:

Post a Comment