Li-Hua Song, Chun-Gui Duan, Na Liu
The investigation into the fast parton energy loss in cold nuclear matter is crucial for a good understanding of the parton propagation in hot-dense medium. By means of four typical sets of nuclear parton distributions and three parametrizations of quark energy loss, the parameter values in quark energy loss expressions are determined from a leading order statistical analysis of the existing experimental data on nuclear Drell-Yan differential cross section ratio as a function of the quark momentum fraction. It is found that with independence on the nuclear modification of parton distributions, the available experimental data from lower incident beam energy rule out the incident-parton momentum fraction quark energy loss. Whether the quark energy loss is linear or quadratic with the path length is not discriminated. The global fit of all selected data gives the quark energy loss per unit path length {\alpha} = 1.21\pm0.09 GeV/fm by using nuclear parton distribution functions determined only by means of the world data on nuclear structure function. Our result does not support the theoretical prediction: the energy loss of an outgoing quark is three times larger than that of an incoming quark approaching the nuclear medium. It is desirable that the present work can provide useful reference for the Fermilab E906/SeaQuest experiment.
View original:
http://arxiv.org/abs/1206.3815
No comments:
Post a Comment