S. Veerasamy, Ch. Elster, W. N. Polyzou
We test the operator form of the Fourier transform of the Argonne V18 potential by computing selected scattering observables and all Wolfenstein parameters for a variety of energies. These are compared to the GW-DAC database and to partial wave calculations. We represent the interaction and transition operators as expansions in a spin-momentum basis. In this representation the Lippmann-Schwinger equation becomes a six channel integral equation in two variables. Our calculations use different numbers of spin-momentum basis elements to represent the on- and off-shell transition operators. This is because different numbers of independent spin-momentum basis elements are required to expand the on- and off-shell transition operators. The choice of on and off-shell spin-momentum basis elements is made so the coefficients of the on-shell spin-momentum basis vectors are simply related to the corresponding off-shell coefficients.
View original:
http://arxiv.org/abs/1206.5026
No comments:
Post a Comment