C. I. Pardi, P. D. Stevenson
This paper deals with the solution of the spherically symmetric time-dependent Hartree-Fock approximation applied in the case of nuclear giant monopole resonances. The problem is spatially unbounded as the resonance state is in the continuum. The practical requirement to perform the calculation in a finite-sized spatial region results in a difficulty with the spatial boundary conditions. Here we propose a absorbing boundary condition scheme to handle the conflict. The derivation, via a Laplace transform method, and implementation is described. The accuracy and efficiency of the scheme is tested and the results presented to support the case that they are a effective way of handling the artificial boundary.
View original:
http://arxiv.org/abs/1209.0971
No comments:
Post a Comment