Amir H. Rezaeian, Marat Siddikov, Merijn Van de Klundert, Raju Venugopalan
The Impact-Parameter dependent Saturation Model (IP-Sat) is a simple dipole model that incorporates key features of the physics of gluon saturation and matches smoothly to the perturbative QCD dipole expression at large Q^2 for a given x. It was previously shown that the model gives a good description of HERA data suggesting evidence for gluon saturation effects at small x. The model has also been applied to proton-proton and proton-nucleus collisions and provides the basis for the IP-Glasma model of initial conditions in heavy ion collisions. Here we present a reanalysis of available data in electron-proton collisions at small Bjorken-x, including the recently released combined data from the ZEUS and H1 collaborations. We first confront the model to the high precision combined data for the reduced cross-section and obtain its parameters. With these parameters fixed, we compare model results to data for the structure function F_2, the longitudinal structure function F_L, the charm structure function F_2^{c\bar{c}}, exclusive vector meson (J/\psi, \phi and \rho) production and Deeply Virtual Compton Scattering (DVCS). Excellent agreement is obtained for the processes considered at small x in a wide range of Q^2. Our results strongly hint at universality of the IP-Sat dipole amplitude and the extracted impact-parameter distribution of the proton. They also provide a benchmark for further refinements in studies of QCD saturation at colliders.
View original:
http://arxiv.org/abs/1212.2974
No comments:
Post a Comment