Y. Fukuoka, T. Nakatsukasa, Y. Funaki, K. Yabana
Large-scale calculation based on the multi-configuration Skyrme density functional theory is performed for the light N=Z even-even nucleus, 12C. Stochastic procedures and the imaginary-time evolution are utilized to prepare many Slater determinants. Each state is projected on eigenstates of parity and angular momentum. Then, performing the configuration mixing calculation with the Skyrme Hamiltonian, we obtain low-lying energy-eigenstates and their explicit wave functions. The generated wave functions are completely free from any assumption and symmetry restriction. Excitation spectra and transition probabilities are well reproduced, not only for the ground-state band, but for negative-parity excited states and the Hoyle state.
View original:
http://arxiv.org/abs/1209.4973
No comments:
Post a Comment