Y. Zhang, M. Matsuo, J. Meng
The giant halos predicted in neutron-rich Zr isotopes with $A=124-138$ are investigated by using the self-consistent continuum Skyrme Hartree-Fock-Bogoliubov approach, in which the asymptotic behavior of continuum quasiparticle states is properly treated by the Green's function method. We study in detail the neutron pair correlation involved in the giant halo by analyzing the asymptotic exponential tail of the neutron pair condensate (pair density) in addition to that of the neutron particle density. The neutron quasiparticle spectra associated with these giant halo nuclei are examined. It is found that the asymptotic exponential tail of the neutron pair condensate is dominated by non-resonant continuum quasiparticle states corresponding to the scattering states with low asymptotic kinetic energy. This is in contrast to the asymptotic tail of the neutron density, whose main contributions arise from the resonant quasiparticle states corresponding to the weakly-bound single-particle orbits and resonance orbits in the Hartree-Fock potential.
View original:
http://arxiv.org/abs/1209.5263
No comments:
Post a Comment