L. E. Marcucci, R. Schiavilla, M. Viviani
The astrophysical S-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium beta decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S-factor at zero energy is found to be S(0)=(4.030\pm 0.006) x 10^{-23} MeV fm^2, with a P-wave contribution of 0.020 x 10^{-23} MeV fm^2. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the S-factor are inherently unstable.
View original:
http://arxiv.org/abs/1303.3124
No comments:
Post a Comment