Wednesday, February 8, 2012

1202.1468 (C. J. Horowitz et al.)

Weak charge form factor and radius of 208Pb through parity violation in
electron scattering
   [PDF]

C. J. Horowitz, Z. Ahmed, C. -M. Jen, A. Rakhman, P. A. Souder, M. M. Dalton, N. Liyanage, K. D. Paschke, K. Saenboonruang, R. Silwal, G. B. Franklin, M. Friend, B. Quinn, K. S. Kumar, D. McNulty, L. Mercado, S. Riordan, J. Wexler, R. W. Michaels, G. M. Urciuoli
We use distorted wave electron scattering calculations to extract the weak
charge form factor F_W(q), the weak charge radius R_W, and the point neutron
radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The
form factor is the Fourier transform of the weak charge density at the average
momentum transfer q=0.475 fm$^{-1}$. We find F_W(q) =0.204 \pm 0.028 (exp) \pm
0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We
find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error
includes PREX statistical and systematic errors, while the model error
describes the uncertainty in R_W from uncertainties in the surface thickness
\sigma of the weak charge density. The weak radius is larger than the charge
radius, implying a "weak charge skin" where the surface region is relatively
enriched in weak charges compared to (electromagnetic) charges. We extract the
point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005
(strange) fm$, from R_W. Here there is only a very small error (strange) from
possible strange quark contributions. We find R_n to be slightly smaller than
R_W because of the nucleon's size. Finally, we find a neutron skin thickness of
R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where
R_p is the point proton radius.
View original: http://arxiv.org/abs/1202.1468

No comments:

Post a Comment