Friday, September 21, 2012

1209.4556 (N. Kaiser)

Chiral four-body interactions in nuclear matter    [PDF]

N. Kaiser
An exploratory study of chiral four-nucleon interactions in nuclear and neutron matter is performed. The leading-order terms arising from pion-exchange in combination with the chiral $4\pi$-vertex and the chiral NN$3\pi$-vertex are found to be very small. Their attractive contribution to the energy per particle stays below $0.6\,$MeV in magnitude for densities up to $\rho =0.4\,$fm$^{-3}$. We consider also the four-nucleon interaction induced by pion-exchange and twofold $\Delta$-isobar excitation of nucleons. For most of the closed four-loop diagrams the occurring integrals over four Fermi spheres can either be solved analytically or reduced to easily manageable one- or two-parameter integrals. After summing the individually large contributions from 3-ring, 2-ring and 1-ring diagrams of alternating signs, one obtains at nuclear matter saturation density $\rho_0=0.16\,$fm$^{-3}$ a moderate contribution of $2.35\,$MeV to the energy per particle. The curve $\bar E(\rho)$ rises rapidly with density, approximately with the third power of $\rho$. In pure neutron matter the analogous chiral four-body interactions lead, at the same density $\rho_n$, to a repulsive contribution that is about half as strong. The present calculation indicates that long-range multi-nucleon forces, in particular those provided by the strongly coupled $\pi N \Delta$-system with its small mass-gap of $293\,$MeV, can still play an appreciable role for the equation of state of nuclear and neutron matter.
View original: http://arxiv.org/abs/1209.4556

No comments:

Post a Comment