Wednesday, July 17, 2013

1307.4130 (Pawel Danielewicz et al.)

Symmetry Energy II: Isobaric Analog States    [PDF]

Pawel Danielewicz, Jenny Lee
Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, from a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from a_a~10 MeV at mass A~10 to a_a~22 MeV at A~240. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (+-2.4 MeV) constraints on the symmetry energy values S(rho) at 0.04View original: http://arxiv.org/abs/1307.4130

No comments:

Post a Comment